179 research outputs found

    A role for fibronectin in the development of beat in chick embryo cardiogenesis

    Get PDF
    Fibronectin is believed to play a directional role in the migration of precardiac mesodermal cells and m~y be involved in other aspects of cardiogenesis. In this study we investigated the role of fibronectin in the development development of heart beat by employing a chick precardiac explant culture system. Fibronectin is recognized by an integrin receptor molecule via an RGD amino acid sequence. Using a synthetic RGD peptide we have blocked the ability of any existing receptor molecules to interact with fibronectin in an attempt to break communication of the mesodermal cells with the extracellular environment. Explanted tissues treated with this blocking agent failed to form contracting vesicles in vitro in a dose-dependent manner. This evidence suggests a role for fibronectin in precardiac cell differentiation and development

    Kidney cancer

    Get PDF
    Over 65,000 Americans are diagnosed with kidney cancer each year and nearly 13,000 die of this disease. Kidney cancer is not a single disease, it is made up of a number of different types of cancer, each with a different histology, a different clinical course, responding differently to therapy and caused by a different gene. Study of the thirteen genes that are known to cause kidney cancer has led to the understanding that kidney cancer is a metabolic disease. Recent discoveries of chromatin remodeling/histone modifying genes, such as PBRM1 and SETD2, has opened up new areas of intense interest in the study of the fundamental genetic basis of kidney cancer. New approaches to immunotherapy with agents such as the CTLA4 inhibitor, ipilumumab, have opened up promising new directions for clinical trials. A number of new agents targeting of VEGF receptor signaling and the mTOR pathways as well as novel approaches targeting HIF2 will hopefully provide the foundation for the development of effective forms of therapy for this disease

    VHL inactivation in renal cell carcinoma: implications for diagnosis, prognosis and treatment

    Get PDF
    Clear cell renal cell carcinoma (ccRCC) provides a tumor paradigm for the integration of genetics, molecular biology, therapeutic target validation, and the introduction of high impact treatment strategies. Most cases of sporadic as well as familial ccRCC acquire somatic inactivating mutations of the von Hippel-Lindau tumor suppressor gene, VHL. pVHL, VHL gene product and a protein member of the E3 ubiquitin ligase family, acts in normal cells to direct the degradation and clearance of the hypoxia inducible factor (HIFα) transcription factor family, such that in its absence, as in ccRCC, the HIF proteins stabilize, accumulate to supraphysiologic levels, and activate the transcription of genes such as vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF), which contributes substantially to the physiology of the tumor, and has been assessed indirectly as a prognostic factor. Molecularly targeted therapy blocking components of this pathway has been successfully introduced to the clinic with a substantive impact on clinical parameters of RCC. This review will examine the regulation of these molecular pathways in RCC and discuss the impact on the clinical management of patients with RCC

    HIF1α and HIF2α Exert Distinct Nutrient Preferences in Renal Cells

    Get PDF
    Background: Hypoxia Inducible Factors (HIF1α and HIF2α) are commonly stabilized and play key roles related to cell growth and metabolic programming in clear cell renal cell carcinoma. The relationship of these factors to discretely alter cell metabolic activities has largely been described in cancer cells, or in hypoxic conditions, where other confounding factors undoubtedly compete. These transcription factors and their specific roles in promoting cancer metabolic phenotypes from the earliest stages are poorly understood in pre-malignant cells. Methods: We undertook an analysis of SV40-transformed primary kidney epithelial cells derived from newborn mice genetically engineered to express a stabilized HIF1α or HIF2α transgene. We examined the metabolic profile in relation to each gene. Results: Although the cells proliferated similarly, the metabolic profile of each genotype of cell was markedly different and correlated with altered gene expression of factors influencing components of metabolic signaling. HIF1α promoted high levels of glycolysis as well as increased oxidative phosphorylation in complete media, but oxidative phosphorylation was suppressed when supplied with single carbon source media. HIF2α, in contrast, supported oxidative phosphorylation in complete media or single glucose carbon source, but these cells were not responsive to glutamine nutrient sources. This finding correlates to HIF2α-specific induction of Glul, effectively reducing glutamine utilization by limiting the glutamate pool, and knockdown of Glul allows these cells to perform oxidative phosphorylation in glutamine media. Conclusion: HIF1α and HIF2α support highly divergent patterns of kidney epithelial cell metabolic phenotype. Expression of these factors ultimately alters the nutrient resource utilization and energy generation strategy in the setting of complete or limiting nutrients

    Recent updates in renal cell carcinoma

    Get PDF
    This review will examine the recent advances in our understanding of the genetic and molecular events that shape this cancer, and overview the emerging targeted therapies that have altered the landscape for renal cell carcinoma (RCC) patients

    Using molecular biology to develop drugs for renal cell carcinoma

    Get PDF
    Renal cell carcinoma is a disease marked by a unique biology which has governed it’s long history of poor response to conventional cancer treatments. The discovery of the signaling pathway activated as a result of inappropriate constitutive activation of the hypoxia inducible factors (HIF), transcription factors physiologically and transiently stabilized in response to low oxygen, has provided a primary opportunity to devise treatment strategies to target this oncogenic pathway

    Identification of Ror2 as a Hypoxia-inducible Factor Target in von Hippel-Lindau-associated Renal Cell Carcinoma

    Get PDF
    Ror2 is an orphan receptor tyrosine kinase with expression normally restricted to early stages of development. However, emerging evidence has placed aberrantly expressed Ror2, leading to an invasive phenotype, in several cancers including renal cell carcinoma (RCC). Although Ror2 is currently identified as up-regulated in an assortment of cancers, neither the regulatory role or mechanism of action have been delineated. We sought to place Ror2 in the most commonly mutated pathway of RCC, the loss of the tumor suppressor von Hippel-Lindau (VHL), which causes hypoxia-inducible factor (HIF)-1α and -2α stabilization and the transcriptional activation of a broad repertoire of response genes. We found that Ror2 was indeed associated with the pVHL loss in RCC as well as with VHL somatic mutations tightly coordinated with the induction of RCC. Additionally, knockdown and rescue analysis of HIF expression suggests that Ror2 is dependent on pathologic stabilization of either HIF-1α or HIF-2α. Subsequent evaluation of the ROR2 promoter suggests that HIF-2α and its dimerization partner, aryl hydrocarbon nuclear transferase localize to the ROR2 promoter via a cryptic transcriptional element. This data substantiates a unique regulation pattern for Ror2 in the VHL-HIF axis that has the potential to be applied to other cancer etiologies

    Renal Cell Carcinoma: Where Will the State-of-the-Art Lead Us?

    Get PDF
    Less than 20 years ago, the von Hippel-Lindau (VHL) gene was discovered and associated with sporadic renal cell carcinoma (RCC). Since then, researchers and clinicians have labored to better understand the biology driving RCC tumor progression and provide means to predict patient survival and response to therapy. Studies surrounding VHL inactivation and downstream effects continue to provide insights into these areas. Besides studies of this primary pathway, cytogenetic studies, gene expression analyses, tissue microarrays, serum proteomics, genomic resequencing, and microRNA profiling have yielded greater understanding of RCC biology and clinical presentation, and have led to a rich understanding of the heterogeneity of this disease. We review the current state of research investigations into the molecular biology of RCC, and discuss the applications to currently used clinical prognostic nomograms

    Emerging molecular classification in RCC: implications for drug development

    Get PDF
    In the past decade, progress has been made in the development of targeted therapies for advanced renal cell carcinoma. However, as multiple therapeutic choices become available for clinicians, we currently lack effective indicators to allow physicians to choose the best treatment option for specific patients. For approved targeted therapies, potential molecules that could indicate drug effectiveness in a specific tumor follow naturally from both the therapeutic mechanism and the previously elucidated tumor biology. However, in advanced RCC, the use of these molecules as biomarkers for treatment selection has shown equivocal results and requires further investigation. In addition to looking at specific molecular targets, subclassification of tumors based on their molecular characteristics may also allow stratification of patients based on therapeutic benefits, providing information for treatment selection. Furthermore, the continued development of such tumor classification schemes will hopefully uncover other molecular targets that warrant development as future RCC therapies. The use of molecular classification of patients’ tumors for treatment selection will provide the opportunity to increase the effectiveness of currently available therapies for advanced RCC and to judiciously pursue promising options for future RCC therapies

    Management of Indeterminate Cystic Kidney Lesions: Review of Contrast-enhanced Ultrasound as a Diagnostic Tool

    Get PDF
    Indeterminate cystic kidney lesions found incidentally on abdominal imaging are an increasingly prevalent diagnostic challenge. The standard workup includes Bosniak classification with contrast-enhanced CT or MRI. However, these tests are costly and not without risks. Contrast-enhanced ultrasound (CEUS) is a relatively new imaging technique with lower risk of adverse events than iodine-containing contrast or gadolinium. In our review of the evidence for characterization of cystic kidney lesions with CEUS, CEUS displayed sensitivity (89–100%) and negative predictive value (86–100%) comparable to contrast-enhanced CT or MRI with no decrease in specificity compared to CT and only a slight decrease compared to MRI
    • …
    corecore